
LSKV: A Confidential Distributed Datastore to Protect
Critical Data in the Cloud

Andrew Jeffery∗

University of Cambridge
United Kingdom

andrew.jeffery@cst.cam.ac.uk

Julien Maffre
Microsoft Research
United Kingdom

Heidi Howard
Microsoft Research
United Kingdom

heidi.howard@microsoft.com

Richard Mortier
University of Cambridge

United Kingdom
richard.mortier@cst.cam.ac.uk

Abstract
Software services are increasingly migrating to the cloud,
requiring trust in actors with direct access to the hard-
ware, software and data comprising the service. A dis-
tributed datastore storing critical data sits at the core
of many services; a prime example being etcd in Kuber-
netes. Trusted execution environments can secure this
data from cloud providers during execution, but it is
complex to build trustworthy data storage systems using
such mechanisms. We present the design and evalua-
tion of the Ledger-backed Secure Key-Value datastore
(LSKV), a distributed datastore that provides an etcd-
like API but can use trusted execution mechanisms to
keep cloud providers outside the trust boundary. LSKV
provides a path to transition traditional systems towards
confidential execution, provides competitive performance
compared to etcd, and helps clients to gain trust in in-
termediary services. LSKV forms a foundational core,
lowering the barriers to building more trustworthy sys-
tems.

Available at https://github.com/microsoft/LSKV.

1 Introduction
Distributed datastores are relied upon to store critical
data at the core of business-critical applications, empha-
sizing the need for secure operation. A popular example
is etcd [47] as used in the core of the Kubernetes or-
chestration platform [52]. All cluster state, including
configuration and secrets, is stored in a single etcd clus-
ter [41, 40]. Attackers with access to the state in the
etcd cluster can manipulate resources to cause arbitrary
behaviour in Kubernetes. Since etcd forms the core of the
flow of requests within Kubernetes [19] it must provide
high performance, correctness, and reliability.

As datastores are increasingly run in the cloud, the
data they contain is left unsecured, despite best-practices
and encryption in-transit and in-storage. Datastores and
services are increasingly deployed to cloud datacenters

∗Work done while at Microsoft Research

due to flexibility and ease of operations. However, the
cloud providers operating the datacenters are not with-
out security incidents themselves [44, 43, 45, 31]. Gaining
privileged access to machines provides malicious actors
the opportunity to bypass customers’ security mecha-
nisms and read data right out of the hardware.

Confidential services can be operated in the public
cloud using Trusted Execution Environments (TEEs) [3].
TEEs such as Intel SGX [38], Intel TDX [18], AMD
SEV-SNP [13], Arm TrustZone [5] and Arm Realms [16]
provide the hardware facilities necessary to support con-
fidential computing. Confidential computing protects
data and code in-memory using attested TEEs, prevent-
ing unauthorized access or modification during execu-
tion, even if the attacker has privileged access to the
machine [34, 21]. Newer Intel processors feature more
memory for SGX enclaves [39], removing the historical
limitations of running larger applications in TEEs. Ad-
ditionally, Intel TDX and AMD SEV-SNP have support
running entire VMs confidentially, confidential VMs [29,
37, 30, 32], providing a new avenue for running larger
systems in confidential environments.

Despite the new support for running VMs in TEEs,
performing a lift-and-shift of existing applications is
not the complete story to make them fit into this new
threat model. Continuing to trust the host can lead to
the applications’ guarantees to being broken. However,
new systems designed for TEEs are not trivial to build.
Work tackling aspects of building on TEEs has been pre-
sented covering untrusted host time [14] and storage [10]
but they are still challenging to combine together into
systems. Additionally, the applications themselves are
complex, requiring consensus [6, 7] and other mecha-
nisms to be correct for proper functioning.

Despite performing a lift-and-shift operation, existing
systems still lack adaptations to the new threat model
they operate in. For instance, they may not give end
clients a means of validating the operations performed
by an intermediate server, such as the Kubernetes API
server, leaving them requiring blind trust.

1

https://orcid.org/0000-0003-0440-0493
https://orcid.org/0000-0001-5256-7664
https://orcid.org/0000-0001-5205-5992
https://github.com/microsoft/LSKV

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

This work presents the Ledger-backed Secure Key-
Value datastore (LSKV). LSKV provides confidential
operation with an etcd-like KV API including range
queries, transactions, leases and watches. It provides
a secure foundation, lowering the barriers to building
trustworthy systems. The contributions of this work are:

1. Motivating why existing datastores are not suit-
able for simple lift-and-shift operation, §2.

2. A route to transition to confidentiality with LSKV,
avoiding the downsides of lift-and-shift, §3.

3. New primitives for waiting for optimistic requests
to be processed and enabling clients to gain trust
in intermediary services, §4.

4. LSKV’s competitive and, for some workloads, im-
proved performance over etcd, §5.

2 Motivation
etcd background. etcd is “A distributed, reliable key-

value store for the most critical data of a distributed
system” [47]. It provides a comprehensive API, primarily
over gRPC [49], starting from a basic single key-space
key-value model with transactions, leases and watches
to higher-level primitives such as distributed locks and
elections. It uses the Raft [6] consensus protocol to pro-
vide strong consistency and durability of its data. etcd
clusters maintain a global revision counter that linearizes
operations and can be used for historical queries.

etcd is widely used as a core building block to store
critical data in production systems such as Kubernetes,
Rook [55], CoreDNS [50], and M3 [53]. This makes the
core API a stable, well adopted target to rely upon.
The performance of etcd is also an important aspect
of its adoption along with its reliability, providing low
maintenance overhead [36]. Moreover, the protobuf [54]
format used in its gRPC API makes it extensible whilst
keeping backwards compatibility.

etcd is run in cloud and on-premise environments,
Table 1 outlines some deployment configurations and
their properties. Ordinarily, etcd provides encryption
of data in-transit, via TLS connections, and defers en-
cryption of data at-rest to the underlying filesystem [35].
As the memory is unencrypted, this leaves etcd deploy-
ments in the cloud vulnerable, given that the encryption
keys reside in-memory. Clients that do not trust etcd
with the confidentiality of their data can encrypt val-
ues themselves before sending them to etcd, known as
client-side encryption [51]. Keys can be encrypted with
order-preserving encryption [2] to retain the ability to
perform Range queries. However, this merely moves se-
curity and key-management concerns from the cluster
operators to the clients, adding more complexity.

Lift-and-shift. In order to provide confidentiality of
data during execution etcd may be run in confidential

VMs: the lift-and-shift approach. Whilst this provides
a simple solution to securing keys and values during
execution, the trust model of etcd itself remains. etcd’s
trust model relies heavily on the host OS. This trust
model leaves it vulnerable to host-controlled attacks
such as rollbacks, these attacks have been explored in
the context of Engraft [26], focusing on the Raft protocol
which etcd builds around. For instance, flushing writes
to disk should not be on the critical path as the host
can respond maliciously, invalidating durability guaran-
tees. Shims could be used to add some level of rollback
protection but they all have downsides in the form of
performance impacts, complexity or overheads [8, 24, 27].
Thus, a lift-and-shift of etcd can break durability guar-
antees, making etcd not suitable to be run in confidential
environments.

Untrusted API servers. Since etcd clusters store sen-
sitive state, attackers with the ability to manipulate the
values can perform arbitrary operations in a Kubernetes
cluster. This could lead to running malicious workloads
to exfiltrate data and disrupt services. Aside from attack-
ing etcd directly, since clients interact with etcd through
the API servers, this exposes another attack vector. An
attacker could control an API server and mutate requests
from the client to perform arbitrary operations under
the guise of the client. This would be difficult for the
clients to notice, particularly when the attacker ensures a
consistent view of the system is presented to the clients.

3 Overview
LSKV is a distributed key-value data store for securing
confidential data in the cloud, built on the Confiden-
tial Consortium Framework (CCF) [28]. It offers API
compatibility with etcd with adaptations to fit LSKV’s
threat model. It provides solutions for untrusted inter-
mediaries that terminate TLS connections, as well as an
incremental adoption model, to aid users transitioning
to confidential datastores in the cloud.

3.1 CCF
CCF is a framework for building distributed, highly-
available, confidential applications. It provides applica-
tion developers with key-value maps for storing state in
a ledger and dispatches requests to the application logic
based on a REST API model. The integrity of the ledger
is guaranteed by a Merkle Tree [1], periodically signed
by the current leader node. The ledger is shared across
nodes, replicated using a protocol based on a variant
of Raft, requiring signatures of the Merkle Tree root to
be replicated before values are considered committed.
Application nodes can run on either a virtual TEE or
Intel SGX. The virtual TEE is not confidential and can
be run in on-premise production environments where

2

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

Table 1. Overview of etcd deployment strategies. LSKV provides all the desired features with a smaller
Trusted Computing Base (TCB). HW: Hardware; O: Operator; OS: Operating System.

System Encrypted
memory Range queries Proof of

writes
Rollback

protection TCB

etcd ✓ HW + O + OS
etcd + client V encryption ✓1 ✓ HW + O + OS
etcd + client KV encryption ✓2 3 HW + O + OS
etcd + confidential VM ✓ ✓ HW + O + OS
LSKV on Virtual ✓ ✓ HW + O + OS
LSKV on SGX ✓ ✓ ✓ ✓ HW
1 Only values are encrypted, not keys or other data.
2 Only keys and values are encrypted, not other data.
3 Range queries would be possible if using order-preserving encryption.

Table 2. API outline.

RPC etcd LSKV
Range ✓ ✓
Put ✓ ✓
DeleteRange ✓ ✓
Txn ✓ ✓

LeaseGrant ✓ ✓
LeaseRevoke ✓ ✓
LeaseKeepAlive ✓ ✓1

Watch ✓ ✓1

Receipts ✓
1 Requires a patched CCF

operators are trusted. SGX is the confidential produc-
tion TEE, supporting confidential operation and remote
attestation, suitable for running in the cloud.

LSKV is an application built on CCF, leveraging its
features, but several contributions from LSKV have been
upstreamed as part of this work.

3.2 Data model and API
The LSKV API mimics that of etcd, aiming for wire-
compatibility, but includes extensions: the addition of
fields to response headers and the addition of a write
receipt endpoint. Table 2 outlines the API. LSKV accepts
requests over either HTTP with JSON payloads or gRPC
with protobuf payloads. This enables flexibility in how
applications interact with LSKV from the outset without
requiring extra dependencies.

LSKV maintains a single key-space. Updates to the
key-space are versioned with a revision counter, incre-
mented for each update. The revision can be used to
query the store at a historical point in time (histori-
cal reads). Response values feature the revision that

they were created at (create_revision), last modified
at (mod_revision), and the number of updates to the
value since creation (version).

Values can have associated leases for tracking client
liveness and distributed coordination such as leader elec-
tion. The lease is created by a client and is assigned a
time-to-live, which the client can refresh. A lease can be
associated with multiple keys and when the lease expires
or is revoked the keys will be deleted. A lease expires if
the time-to-live passes without being refreshed, and can
be manually revoked by clients. As there is no way to re-
liably schedule work in the TEE we perform the deletion
of keys with expired leases during a compaction call. In
the meantime, after expiration but before a compaction,
leases are soft-deleted — they will seem to be expired
from the client’s perspective but still retain storage.

Clients are also able to watch values in LSKV, stay-
ing up-to-date without polling. They can start watching
from the latest revision and be streamed updates to
specified keys as they occur. Alternatively, a client can
start watching from a historical revision, for instance
if the client had to restart but has some stored data
and needs to catch-up from a known point. LSKV only
sends updates to clients for values that have been com-
mitted in the cluster. Due to current limitations in CCF
for bidirectional HTTP2 streams [42], LSKV requires a
patched version of CCF for Watch requests to work.

All responses from the LSKV cluster come with a re-
sponse header, the fields of which are outlined in Table 3.

3.3 Threat model
LSKV has three categories of actors, inherited from CCF:
operators that manage the running of the application in-
stances, governors that are responsible for management
of the running service based off of a JavaScript consti-
tution containing available actions, and clients that call
application endpoints, outlined in Figure 1.

3

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

Table 3. Response header fields.

Name Description
Cluster ID Cluster-wide identifier
Member ID Per-node identifier
Raft term Latest Raft term
Revision Latest revision
Committed Raft term1 Raft term of last commit
Committed revision1 Revision of last commit
1 Unique to LSKV

Operators are untrusted, typically being a cloud opera-
tor when deploying LSKV to the cloud, and are assumed
to have complete control over the host running the ap-
plication instance. They can perform denial of service
attacks against the LSKV service by turning machines
off, or interfering with network traffic. LSKV does not
mitigate these attacks and so cannot maintain liveness in
these cases. Additionally, LSKV does not obfuscate ac-
cess patterns, mitigate timing attacks, or mitigate other
side-channel attacks. LSKV mitigates operators inter-
fering with reads and writes to storage by not relying
on the data to be persisted as part of the guarantees
it provides, notably protecting against storage rollback
attacks. Persisted data is encrypted with keys stored in
the TEE and so is not readable by the operator, only the
governors can get the key to decrypt. LSKV uses host
time for leases and does not mitigate against the time
moving forwards abnormally, however time is limited
to be monotonically increasing during a node’s lifetime.
This is a known limitation of the system and would re-
quire support in CCF to work around. When deployed
to a system with a secure TEE LSKV makes standard
assumptions about running in a TEE, particularly that
code is integrity protected and memory is encrypted and
integrity protected. For SGX there are a number of vul-
nerabilities [25], the compile-time mitigations are applied
to LSKV where available. Attested TLS is used for node-
to-node communication to ensure peers are running in
TEES and using TLS for client-to-node communication.

Governors are trusted in aggregate: they propose ac-
tions from the constitution and these are voted on by
other governors. A proposal must pass a vote threshold
before being applied, configurable in the constitution.
The actions available to governors surround node cluster
membership, governor membership, service management
(opening the service, rotating certificates), and recovery
of the service. LSKV provides a simplified constitution
enabling single-governor actions for simplicity but this
is configurable. All governance interactions are signed
and available publicly in the ledger.

Node
(leader)

Node

NodeServer

Governor

Client

Operator

Cloud

Figure 1. High-level view of a typical 3-node cluster.

Clients are untrusted apart from using the application
endpoints and other read-only endpoints that do not
expose sensitive information. We assume an open security
model for clients for simplicity: those that can provide
a valid client certificate for the service can use all the
functionality, including reading and writing any data in
the store.

3.4 Consistency model
LSKV provides linearizable writes and serializable reads.
Writes are acknowledged optimistically, not waiting for
commit through consensus, instead leaving the action
of waiting for consensus to complete for the client, to
ensure linearizability of the write. Reads can be served
at any node and clients can wait for the read value
to be committed to ensure serializability, the values
may be stale. Within a TLS session LSKV maintains
session consistency and this can be enforced manually,
for instance across sessions, using the revision field in
the response header.

3.5 Fault and durability model
LSKV assumes crash-fault tolerance which is limited to
having a majority of cluster nodes being available, other-
wise disaster recovery is needed. Nodes do not operate in
a Byzantine manner due to the code integrity protection
of the TEE. Since LSKV does not trust the host to per-
sist values to disk, data is not eagerly persisted before
responding to clients. This is a fundamental limitation
of the threat model: without trusting the host to persist
data we cannot guarantee durability of this form. This
equally applies to lift-and-shift systems which have their
durability guarantees broken due to the different threat
model applied in this context. Clients wanting to ensure
values are available after restarts of the node they are
interacting with should ensure that the transaction for
their operation has been committed to a majority of
nodes, and thus available in-memory on them.

3.6 Incremental adoption
There are two ways LSKV supports incremental adop-
tion: TEE flexibility and write receipts.

4

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

TEE flexibility. Starting from an existing deployment
of etcd in a private datacenter, Figure 2a, we assume
that the operator is trusted, TLS is used for network
communication and data is being stored on an encrypted
disk. The keys for the TLS communication and filesystem
encryption are currently stored in unencrypted memory.
Deploying this configuration to the public cloud, even
running etcd in a TEE, would not fit the threat model
we want as discussed previously. Instead, we want to
transition the existing service to LSKV incrementally
to gain confidence and operational expertise. Firstly, we
make use of TEE flexibility within LSKV, allowing it
to run in multiple target environments. This enables
LSKV to be deployed in a virtual TEE, a standard
process, in the private datacenter as shown in Figure 2b.
This retains the same trust in the operator, and the
same conditions for everything else but gives clients
a chance to update to any changes required, perhaps
waiting for commits. It additionally gives the operators a
chance to test performance, stability and any automated
management of their service with it being minimally
different from the previous setup. Later, once operators
have confidence in operating the service, they can begin
transitioning to a deployment of LSKV in the public
cloud using the SGX TEE. This gives the same setup,
but now the operator is untrusted, as shown in Figure 2c.
Since the operator is untrusted and LSKV is running in
a secure TEE it uses attested TLS and the private keys
are stored securely in the enclave memory.

Write Receipts. LSKV provides write receipts for de-
tecting malicious intermediary servers, shown in Figure 3.
We assume that the server terminates TLS connections
and does some intermediate processing on the data. After
performing some request including writes to the interme-
diate server, clients can request a receipt for the writes.
This receipt provides offline proof that the write was
committed to the LSKV cluster and can be used to ver-
ify the actions performed by the untrusted server. The
receipt can also be used as proof to other parts of a
system that the write request took effect, to ensure that
they continue working from a successful state.

4 Implementation
LSKV is implemented as a C++ application on CCF, tak-
ing ~2,100 lines of code, the constitution forms ~1,200
lines of JavaScript and ~2,500 lines of code were up-
streamed to CCF. Figure 4 highlights the separation
of functionality offered by CCF and that which LSKV
implements.

Requests are routed by CCF and handled by regis-
tered endpoint handlers. These handlers run only on a
single thread and perform the primary business logic of
updating data in the store using abstractions over CCF

Memory

Encrypted storage

TLS

etcd
TLS key

FS key

(a) Initial etcd deployment in a private datacenter.

Memory

Encrypted storage

TLS

LSKV
TLS key

FS key

(b) Switching to LSKV in a virtual enclave.

 SGX

Memory

Encrypted storage

TLS key

FS key

LSKV

Attested TLS

(c) Deploying to a public cloud using LSKV on SGX.

Figure 2. Architecture and trust during incremental
adoption. Green is secure, yellow is using encryption but
not necessarily integrity protected, red is insecure. The
background represents the security of the environment.

Proxy

LSKV

Client

Put(Alice, £500)
& GetReceipt()

Put(Bob, £500)
& GetReceipt()

Bob = £500Alice = £500

Signed receipt
for Bob = £500

Signed receipt
for Bob = £500

INVALID RECEIPT!

Figure 3. Example of a malicious proxy being detected
with write receipts.

maps. After the handler completes, mutations are stored
in the ledger. When operations get committed they are
used to populate the index in LSKV. This index is then
used to serve historical Range requests.

4.1 Internals
Response headers. Each response from LSKV comes

with a response header. The fields contained in a response
header are outlined in Table 3. The cluster ID is a hash
of the service’s public key for the cluster, only changing
for a cluster during disaster recovery. The member ID
is a hash of the node’s public key, making it unique
to the node that handled the request. The Raft term
along with the revision, a global counter updated with

5

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

KVStore

Endpoint handlers

LeaseStore Index

Maps Indexer

Ledger

Disk Clock ticks

LSKV

CCF

Host

Merkle Tree Consensus

Figure 4. LSKV internals. Dashed arrows imply
asynchronous communication.

each operation, form the transaction ID for the request.
Transaction IDs identify operations and can be used to
check the commit status. Only requests that mutate the
store have an associated transaction ID. Requests that
do not mutate the store have a Raft term and revision
filled in with the same values as found in the committed
Raft term and committed revision, respectively. The
committed Raft term and committed revision form the
transaction ID that was last committed at the time of
handling the request. This committed transaction ID is
primarily useful to inform the commit status of pending
transactions, indicating whether they have been through
consensus.

struct Value {
std :: vector <uint8_t > data;
int64_t create_revision ;
int64_t mod_revision ;
int64_t version ;
int64_t lease;

}

Listing 1. C++ implementation of a stored value.

Internally, LSKV stores key-value and lease data in
CCF maps. The maps store a byte vector for a key and
a JSON serialized Value struct (Listing 1) as a value.
The data field is the bytes of the value that the client
sends in a Put request. The version is the number of
updates to the value since its creation and the lease is
the ID of a lease which may be associated with the value.
The create_revision is the revision that the value was
created at and the mod_revision is the revision that
the value was last modified at.

When executing a request LSKV operates on an inter-
nal CCF transaction which is a snapshot of the key-value
store. However, the transaction’s ID is not known until
after the execution of the application logic so the revi-
sion fields cannot be entered correctly. Instead, LSKV
lazily computes the values of the create and mod revision

when loading a value from the map. On creation of a new
value in the map LSKV sets both revisions to 0. Then,
on subsequent operations, the value is first read out of
the map and updated to set the revisions to the correct
values. The map is queried for the ID of the transaction
that last modified this key in the map. The transaction
ID’s revision is then used to set the create revision, if
it was 0, and always set the mod revision of the value.
This means that the revision fields in the values stored
in the ledger lag behind by one update.

Consensus and persistence. Once internal CCF trans-
actions have been executed they are queued for asyn-
chronous replication to other nodes. Once internal CCF
transactions have been replicated to a majority of nodes
along with a signature they are deemed committed. The
state of the transaction will then reflect this when queried
by clients. Whilst items are replicated through consensus
they are also added to the ledger, encrypted and queued
to be persisted to disk asynchronously. By default LSKV
stores all entries in private CCF maps which are stored
encrypted in the ledger.

Historical index. After transactions have been com-
mitted with the other nodes they cannot be rolled back
in the course of normal operation. Thus they can be
added to a historical index, used for historical Range
requests and Watch streams in LSKV. It is backed by
CCF’s indexer which periodically applies the latest com-
mitted transactions to the historical index, prompted by
a tick from the host’s clock. This process is not synchro-
nous with consensus and so the historical index can lag
behind the latest committed values.

Public ledger entries. Since LSKV stores all entries in
private CCF maps by default, both keys and values are
encrypted on-disk. However, governors may want some
keys to be stored unencrypted in the ledger to enable au-
ditability of non-sensitive data. Governors can alter this
by making and accepting governance proposals which are
publicly auditable. Once the proposal is accepted, logic
is executed to make new writes to keys with the proposed
prefixes publicly readable in the ledger. On top of these
options, clients can still perform their own encryption if
the clients have very secret values that they do not trust
the governors with, however this should be rare as the
governors should be within the trust boundary.

4.2 Consistency model
LSKV is optimistic when processing requests for the
latest state, allowing clients to observe values that have
not yet been committed, but gives clients the option to
be more pessimistic. It is pessimistic when processing
requests for historical values, guaranteeing that readers

6

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

Table 4. States of a transaction. Terminal states bolded.

State Description
Unknown Node is unaware of the operation
Pending Operation is awaiting consensus
Committed Operation is committed
Invalid This operation cannot be committed

observe a committed view of the data. This split con-
sistency mechanism enables the clients to leverage the
most useful one to them and their use-case. In practice
this means that:

1. After committing mutations, the leader orders
the transaction with other executing transactions,
assigning it an ID, acknowledges to the client, and
then sends the operation through consensus.

2. The client can check on the status of a transaction
ID to wait for it to be committed.

3. When reading without a revision set, the client
may observe values that have not been committed.

4. Clients can specify a revision to only observe com-
mitted values when reading.

4.2.1 Optimistic (latest data). LSKV provides lineariz-
able writes and serializable reads. These operations
are optimistic: they return to the client before waiting
for commit. The writes at the leader node are asyn-
chronously sent to backup nodes through CCF’s consen-
sus layer, which performs batching based on configurable
count and time intervals. Meanwhile the client gets a
response indicating the revision and Raft term that the
write will be present at if it is successfully committed
through consensus. Table 4 describes the states that a
transaction can be in. With the revision and Raft term,
the client can employ different strategies for checking
that a write has been committed, outlined below. Reads
can be serviced by any active node in the cluster.

Since write requests must be served by a leader, re-
quests issued to a non-leader node may be forwarded to
the current leader for execution. Read requests can be
served at any active node.

Despite LSKV being optimistic about consistency,
some clients may want to wait for values to be commit-
ted before continuing. To support this, LSKV supports
methods for checking the status of an operation, given
the ID. Clients can use the following strategies to flexibly
wait for operations to be committed based on their usage
pattern. Figure 5 shows an example series of transac-
tion IDs and the Raft term history, Table 5 summarizes
relative performance.

Table 5. Comparison of commit checking
strategies in terms of number of messages to the
service. n is the number of requests waiting for
commit, t is the number of raft term changes

that have occurred during the execution.

Strategy Best case Worst case
Naive O(n) O(n)
Poll last O(1) O(n)
Poll committed O(1) O(t)
Poll with raft history O(1) O(1)
Returned committed O(1) O(1)

Naive Poll the transaction status endpoint for each
ID until a terminal status is obtained for each. This
places extra load on the cluster but makes for simple
client logic.

Poll last in Raft term Locally filter the IDs to the
last in each Raft term and apply the naive strategy with
these. If a transaction ID turns out to be invalid then
discard it and poll the previous ID for that Raft term.
This strategy is more efficient but requires introspection
of the transaction IDs.

Poll latest committed transaction Poll the latest com-
mitted transaction ID in the cluster. From this ID locally
calculate the status of each transaction ID, provided that
they are all in the same Raft term. If a change of Raft
term is observed then fall back to one of the previous
strategies.

Poll latest with Raft term history Polling the latest
committed transaction can be coupled with the Raft
term history, which contains the first transaction ID in
each Raft term, to handle Raft term changes efficiently.
This is particularly efficient when the cluster changes
Raft terms frequently and it reduces load on the cluster,
aiding in faster recoveries. The Raft term history required
for this strategy was upstreamed to CCF as a part of
the LSKV work.

Using returned committed IDs Rather than polling
the cluster for statuses and the last committed ID, the
ID of the last committed transaction can be used from
the response header. This works best in times of stability,
when the Raft term is not changing but can be coupled
with periodic refreshes of the Raft term history. This
strategy is most efficient for when making a large number
of requests.

4.2.2 Pessimistic (historical data). Compared to re-
quests operating on the latest state, requests working on
the historical state of the store can only observe commit-
ted values. Reads are served from the index which tracks
the committed values and does not contain optimistic
values. Separating index updates from consensus rounds

7

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

2 3 4
Raft term

1
2
3
4
5
6
7
8
9

Re
vi

sio
n

2.1 3.3

4.6

Figure 5. Timeline of Raft term changes and revisions.
Annotated vertices show Raft term history entries.

keeps them off the hot path, keeping optimistic opera-
tions fast at the cost of staleness in historical queries.
Each node maintains their own index so different nodes
may have different staleness profiles. Since every response
from LSKV includes the revision and Raft term of latest
committed item clients can use this as an indication of
the latest state available in the index across nodes they
interact with.

4.3 Auditability
When a value is committed in CCF there is a correspond-
ing signature over the internal Merkle Tree state. This
signature is stored in the ledger along with the entries
used to form the Merkle Tree. Since all operations are
recorded in the Merkle Tree a valid signature can be
used to confirm that an operation was committed. This
signature also identifies the node that created it. These
signatures are stored publicly in the ledger and can be
used to validate the ledger by all with access to it.

Write receipts. Clients may not always be able to
connect to LSKV nodes directly, instead interacting
with an intermediary such as the Kubernetes API server.
These terminate TLS sessions, potentially aggregating
requests to the datastore or presenting their own API.
However, clients must now trust the intermediate server
to both handle their data safely and faithfully perform
their operations. Preventing the intermediate server from
leaking confidential data is out of scope of LSKV but
may be mitigated by client-side encryption of values.

To avoid clients having to trust intermediary servers
to faithfully perform their requests, LSKV can provide
unforgeable write receipts. These write receipts provide
an end client with cryptographic proof to validate that
the action it requested the intermediary to perform is
what was executed at LSKV and the results of mutations
have been committed to the ledger. To request a write
receipt clients submit a revision and Raft term (the
transaction ID) of a previous request to a get receipt
endpoint. LSKV then fetches the receipt asynchronously,

presenting it to the client once available. Receipts from
LSKV include a digest of the serialized request and
response, which the client has possession of and so can
verify the receipt themselves.

The structure of a write receipt is outlined in List-
ing 2. The node_id is the ID of the node that generated
the receipt, cert is its public certificate. Fields under
leaf_components form a leaf in the Merkle Tree; the
write_set_digest is a hash of the keys written to dur-
ing a transaction, commit_evidence is a per-transaction
string that guarantees the transaction is committed and
claims_digest is a hash of the custom claims made by
LSKV. proof is a list of steps to successively combine
with the calculated leaf node to obtain the root of the
Merkle Tree. The signature is the signature over the
root of the Merkle Tree. LSKV extends CCF’s write
receipts by recording the serialized request and response
as custom claims when mutating requests are made. The
hash of these claims is used in a receipt to prove that
a request was handled, and results of mutations from it
are stored in the committed ledger.

Receipt verification is broken into three stages: con-
firming the claims digest is correct, checking that the
receipt is valid, and checking that the signing certifi-
cate is trusted. To calculate the claims digest the client
needs to calculate the SHA-256 hash the protobuf serial-
ized request and response, removing the header field in
the response as it is not filled in during transactions in
LSKV and so is not recorded in the claims. The client
should then confirm their calculated value is the same
as the receipt-provided claims_digest. To check the
receipt’s validity the client must rebuild the root of the
Merkle Tree. They should hash the commit_evidence
field and concatenate the write_set_digest, hash of
the commit_evidence, and the hash of the custom claims
to produce the leaf. The leaf is then combined suc-
cessively with the proof elements, concatenating the
current item to the left or right as given and hashing the
result, to calculate the root. Finally, the client should
verify the signature over the calculated root. To confirm
that the node signing the receipt is trusted by the LSKV
cluster a client should confirm that the service certificate
of the cluster endorses the node certificate given in the
receipt.

8

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

node_id : "..."
cert: "-----BEGIN CERTIFICATE -----..."
leaf_components :

write_set_digest : "..."
commit_evidence : "..."
claims_digest : "..."

proof:
- left: "..."
- right: "..."
signature : "..."

Listing 2. Structure of a write receipt in YAML.

4.4 Discussion
Incremental adoption. For users with current on-premise

etcd deployments there is likely to be friction in switch-
ing to other offerings due to having to change client-side
code, operational infrastructure, as well as simply requir-
ing developers to learn new systems. The approach LSKV
takes to these challenges is to extend current systems,
keeping core API compatibility, rather than creating new
interfaces. This means that client-side code needs only
minimal changes in order to wait for commit, operational
infrastructure needs minimal changes due to the change
in threat model, and developers only have to learn mini-
mal new features if they want to use them, which is not
a requirement. This model aims to greatly accelerate the
adoption of confidential computing platforms, making
them available to the masses. The approach taken by
LSKV to solve this problem is something that can be
reflected in further systems design.

Optimistic consistency. In light of aiding adoption,
whilst updating the threat model, LSKV is optimistic
about consistency. Upon response, clients do not have a
guarantee of their values being committed, rather they
have the option to wait for commit. It would be feasible
to operate an intermediate server between clients and
LSKV that waits for values to commit before respond-
ing to retain strong consistency by default, reduce the
transitioning burden. This could take a similar role as
etcd’s gateway [48] that performs other operations, such
as watch aggregation, to extend the scalability of the
cluster. Alternatively, it could be built into platforms
that have API servers for other functionality. The flex-
ible waiting primitives that LSKV provides emphasise
the opportunities for clients to be in control of their
consistency and performance.

Untrusted servers. Whilst data confidentiality is a
primary focus of LSKV, being able to build trust in
systems is also a key concern. Clients making requests to
write data into LSKV, whilst trusting the intermediary

with the data may want confirmation and a guarantee
that data was written into LSKV with a write receipt.
Write receipts can also be passed to other clients as proof
that requests were performed and data written back as
expected.

5 Evaluation
To evaluate LSKV we first compare it with etcd, be-
fore exploring other factors of LSKV’s performance. We
investigate the following aspects:

1. LSKV’s performance compared to etcd §5.2
2. LSKV’s horizontal scalability §5.3
3. LSKV’s vertical scalability §5.4
4. The impact of optimism §5.5

5.1 Setup
All of the benchmark runs were performed in a cluster
of virtual machines in Microsoft’s Azure cloud, using the
“East US” location. All machines in this cluster had the
“Standard_DC4s_v3” machine type, which equates to
4 vCPUs, 32GiB memory, with a premium SSD. They
were running Ubuntu 20.04 for their OS. The machines
have support for spawning Intel SGX enclaves, which are
used for LSKV running in SGX mode. Datastore nodes
were run on separate machines, with full access to its
resources, in the cluster and the benchmark clients run
from a single separate machine in the cluster. Mutating
operations (puts and deletes) target the leader node at
the start of the run, read operations target all nodes in a
round-robin fashion. For the SGX enclave build of LSKV
the enclave is set with NumHeapPages equal to 500,000.
Each page is 4KiB so this equates to a maximum of 2GB
of heap memory. The benchmarks were repeated 10 times
and the plots presented summarise all the repeats. LSKV
is run with a base configuration of 2 worker threads and
a signature interval of 1s.

YCSB benchmark. The Yahoo! Cloud Serving Bench-
mark (YCSB) [4] is a standard benchmark for distributed
storage systems, presenting workloads based on real-
world scenarios. We use a custom Rust implementation
in-place of the original Java version. For the presented
experiments the client uses 100 virtual clients to issue
requests for all workloads in a closed-loop fashion. Tests
comparing with etcd target 20,000 requests per second
and others target 10,000 requests per second, all running
for 10 seconds. All workloads use a zipfian distribution.
Table 6 describes the workloads used. For LSKV, the
writes do not include the time to wait for a commit. The
read-modify-write operation is implemented as a native
etcd transaction and all reads are serializable. We use
only workload A after the comparison with etcd as it
represents a balanced mix of reads and writes.

9

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

Figure 6. YCSB workloads against etcd and LSKV on disk and tmpfs with 3 nodes, 20,000 requests per second.

Latency measurement. The latency records the time
taken for a node to process a request and respond, mea-
sured at the client. It is calculated from the time recorded
at the start of sending the request, and at the end of
receiving the response. This assumes that the connection
has already been established and is maintained through-
out the run.

5.2 LSKV vs etcd

Q: How do the differing internal mechanics of the
etcd API exposed by LSKV impact performance?
A: LSKV is competitive with etcd.

10

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

Figure 7. Total throughput of YCSB workloads against
etcd and LSKV on disk and tmpfs with 3 nodes, 20,000

requests per second.

Table 6. YCSB workload characteristics.

Workload Description
A Update heavy (50% reads, 50% updates)
B Read mostly (95% reads, 5% updates)
C Read only (100% reads)
D Read latest (95% reads, 5% inserts)
E Short ranges (95% scans, 5% inserts)
F Read-modify-write (50% reads, 50% rmw)

Figure 6 shows the latency and Figure 7 the total
throughput results of YCSB workloads applied to LSKV-
sgx, LSKV-virtual and etcd version 3.5.4 with 3 nodes.

Presenting the same core API as etcd leads clients
of LSKV to expect similar performance characteristics.
However, since LSKV performs more work to offer extra
functionality we expect there to be a small overhead.
Since SGX builds of LSKV include extra mitigations
we expect this platform to be more severely impacted.
Through all the YCSB workloads LSKV on disk keeps
competitive write performance with etcd, reads on etcd
are lower latency and when run on tmpfs etcd consis-
tently wins. All of the datastores are able to attain the
applied load rate, apart from LSKV-sgx on workloads A
and F which feature higher proportions of writes posing
a higher CPU workload.

The writes to LSKV do not wait for commit, as the
etcd writes do. This comes down to a core trade-off
in LSKV between commit latency and throughput as
producing the commit signatures is costly, explored more
in §5.5. Despite this, the steady-state of these systems
places the emphasis on being optimistic, with clients
falling back to wait for commit if absolutely necessary.
Leader elections would lead to lower performance as
clients may turn more pessimistic, waiting for commits
more until LSKV returns to stability.

It is clear to see the distinction between reads and
writes for etcd in workloads A and F in the stepped
latency when running on a disk. This is less extreme

with a smaller proportion of writes occurring such as
in workloads B, D and E and latency significantly im-
proves in workload C due to no writes. Coupled with
the observation that this step is no longer present when
running on a tmpfs, this implies that writes in etcd are
expensive primarily due to the requirement to flush to
disk before returning, in order to guarantee persistence.
LSKV-sgx also sees a step-wise increase in latency for
large volumes of writes, however, this continues when
running on a tmpfs indicating that the writes are incur-
ring the overhead of cryptography and added mitigations
for SGX, as they do not synchronously flush to disk. For
write-heavy workloads, A and F, LSKV-virtual provides
a much more consistent experience to clients due to the
optimistic consistency model and the lack of need for
mitigations and their associated overhead. Given that
LSKV does more work on each request at the leader
node, processing the data to the ledger and updating the
merkle tree, these results align with our expectations.

Despite the significant impact of the mitigations for
SGX newer platforms show that these overheads could
be significantly reduced, bringing performance closer to
that of the virtual build. In particular, AMD’s SEV-SNP
poses an opportunity to run applications in a confidential
environment with a lower overhead of 2–8% compared
to virtual, according to a joint analysis by AMD and
Azure [33].

5.3 Horizontal scalability

Q: How well does LSKV scale horizontally?
A: LSKV scales like a typical Raft-based system.

The scalability of a distributed system is typically
important in order to be able to support increased redun-
dancy and attain higher performance. This experiment,
results shown in Figure 8, exposes the scaling proper-
ties of LSKV under the YCSB workload A. The virtual
mode is able to handle the load with a slight increase in
latency for one node. However, for SGX mode the reads
are served with expected latency at all scales but the
updates experience improved performance on 3 and 5
nodes compared to 1 dropping back down at 7 nodes
indicating an overload of the leader with 7 nodes due to
the extra replication requirements.

5.4 Vertical scalability

Q: How well does LSKV scale vertically?
A: LSKV benefits from additional parallelism.

Figure 9 presents results from varying the number of
additional worker threads used for a YCSB workload A.
Having 1 additional worker thread from the base of 0

11

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

Figure 8. Varying cluster size, 10,000 requests per
second.

Figure 9. Varying the worker threads, 10,000 requests
per second.

seems to reduce latency, particularly at the tail for up-
dates on both virtual and SGX. An extra worker thread,
making 2, also improves latency however matching the
number of worker threads to that of the number of cores
present on the machine degrades performance. This is
expected due to CCF using a base number of two threads
for the main processing of transactions and networking.

5.5 Commit latency and receipts

Q: How does optimistic consistency impact per-
formance and receipt generation?
A: The level of optimism directly impacts the
commit and receipt delay.

Since LSKV provides optimistic consistency, Figure 10
highlights an example of how commits lag behind during
a benchmark run. The commits are seen at 1 second
intervals (the vertical jumps of the committed revision),
the value set for our evaluation, though this is tunable
for deployments. This means that clients would have to
wait at most approximately 1 second before their value
gets committed. The impact of increasing the signature
frequency is shown in Figure 11, showing an increase
in latency of all aspects from the more frequent signa-
tures. This is because the leader must spend more of
its time computing the signature instead of processing
transactions.

Figure 10. Commit progress during a single YCSB
workload A benchmark run.

Figure 11. Varying the signature interval, 10,000
requests per second.

This also has direct impacts on the latency for obtain-
ing receipts, which require the operations to be commit-
ted. Tuning the signature interval to be more frequent
would reduce this latency but add more load to the
leader for creating the signatures. Receipts can be gen-
erated by non-leader nodes to aid in handling the extra
computation.

Once clients obtain a receipt they need to verify it
offline. To evaluate this we wrote a Python benchmark
using the CCF library for validation. A hard-coded re-
ceipt was used, along with service certificate to check
the claims were correct, the signature was valid, and
that the node certificate was endorsed by the service
certificate. This setup could achieve 541 verifications in
sequence per second on a single machine.

6 Related work
Embedded datastores. FastVer [15] extends Faster [9],

an embedded concurrent and integrity-protected key-
value store, with a verify method for data integrity
based on a Merkle Tree. Being embedded, Faster does
not offer fault tolerance itself, leaving this to the wrapper
program, unlike LSKV that handles fault tolerance and
replication natively. Faster leverages concurrency heavily

12

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

compared to LSKV which handles core logic on only
a single thread. LSKV internally uses CCF’s Merkle
Tree which, as demonstrated by FastVer, can alone reach
only 100,000 operations per second, working purely in-
memory on a single thread on a virtual TEE.

ShieldStore [12] and Precursor [20] work around the
old limitation that SGX enclaves had very limited mem-
ory available, however, since this limitation no longer
exists regular in-memory data structures can be used.

Confidential distributed building blocks. T-Lease [14]
presents a distributed lease primitive, similar to those
provided by LSKV, that works on untrusted time without
violating the properties of a lease. LSKV does not protect
the lease properties directly, using the host-provided time
instead. T-Lease would pose a good further extension
to LSKV, including generalizing it to cross-platform
implementations.

Treaty [23], Engraft [26] and Enclage [22] all imple-
ment components of building distributed confidential
applications, covering transactions, consensus, and stor-
age respectively. Treaty manages distributed transactions
over multiple nodes using two-phase commit, whereas
LSKV executes transactions on a leader node, replicating
the results through a variant of Raft. Engraft implements
Raft over nodes running TEEs, offering a reusable Raft
implementation. This Raft implementation is another
variant of Raft compared to CCF’s but tolerates the
same number of node failures: f out of 2f+1 nodes. En-
clage implements a performant, encrypted storage engine
designed to leverage enclave-native concepts, but does
not cover data integrity. LSKV’s backing ledger stores
private data encrypted with a ledger key and persists
integrity-protected files to disk.

VeritasDB [11] provides a proxy that sits between
unmodified clients and existing database servers to guar-
antee integrity to the client in the presence of exploits
or implementation bugs in the database servers. This is
limited to integrity, not full confidentiality of the data,
despite the proxy running in an SGX enclave.

Distributed confidential datastores. Avocado [17] and
EdgelessDB [46] are distributed datastores that present
different persistence guarantees. Avocado is in-memory
only, similar to LSKV’s optimistic approach, not relying
on data to be persisted to disk. It supports integrity-
protection of data and provides strong consistency for
client requests. Avocado does not support transactions,
ranges, leases, watch requests or write receipts, and for
a comparable YCSB setup achieves similar results to
LSKV. EdgelessDB aims to be compatible with MySQL
databases whilst offering confidentiality of data during
execution. It serves requests with multiple cores and
eagerly persists data to storage, unlike LSKV but does
not support features such as leases, watches and write

receipts. Additionally, it does not support multiple nodes,
sacrificing on the availability of the service.

7 Conclusion
In this work we have presented LSKV, the Ledger-backed
Secure Key-Value datastore. It builds on top of CCF,
keeping cloud operators out of the trust boundary when
running in confidential TEEs but can be run on-premise
outside of a TEE for more performance. It presents a
familiar etcd-like API, easing the transition of existing
services to confidential environments. It provides a con-
sistency model suited to the trust boundary it works
within, reducing reliance on the host, unlike common
lift-and-shift situations. It helps clients gain trust in
intermediary services with write receipts and achieves
competitive performance compared to etcd, in a compa-
rable setting. Overall, LSKV enables building trustwor-
thy systems to work securely with critical data in the
cloud, offering a secure foundation for new confidential
systems.

Acknowledgments
Thanks to the CCF team at Microsoft Research for their
help during this project.

References
[1] Ralph C. Merkle. “A Digital Signature Based on a

Conventional Encryption Function.” In: Advances
in Cryptology — CRYPTO ’87. Ed. by Carl Pomer-
ance. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1988, pp. 369–378. isbn: 978-3-540-48184-3
(cit. on p. 2).

[2] Alexandra Boldyreva, Nathan Chenette, Younho
Lee, and Adam O’neill. “Order-preserving sym-
metric encryption.” In: Advances in Cryptology-
EUROCRYPT 2009: 28th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings 28. Springer. 2009, pp. 224–
241 (cit. on p. 2).

[3] Open Mobile Terminal Platform. Advanced Trusted
Environment: OMTP TR1. Tech. rep. Open Mobile
Terminal Platform, 2009. url: https://www.gsma.
com/ newsroom/ wp-content/ uploads/ 2012/ 03/
omtpadvancedtrustedenvironmentomtptr1v11.pdf
(cit. on p. 1).

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. “Bench-
marking Cloud Serving Systems with YCSB.” In:
Proceedings of the 1st ACM Symposium on Cloud
Computing. SoCC ’10. Indianapolis, Indiana, USA:
Association for Computing Machinery, 2010, pp. 143–
154. isbn: 9781450300360. doi: 10.1145/1807128.

13

https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

1807152 . url: https://doi.org/10.1145/1807128.
1807152 (cit. on p. 9).

[5] Rob Coombs. GlobalPlatform based Trusted Execu-
tion Environment and TrustZone Ready. Tech. rep.
Arm, 2013. url: https:// community.arm.com/
cfs-file/ __key/ telligent-evolution-components-
attachments / 01 - 2142 - 00 - 00 - 00 - 00 - 51 - 36 /
GlobalPlatform-based-Trusted-Execution-Environment-
and-TrustZone-R.pdf (cit. on p. 1).

[6] Diego Ongaro and John Ousterhout. “In Search
of an Understandable Consensus Algorithm.” In:
Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference. USENIX
ATC’14. Philadelphia, PA: USENIX Association,
2014, pp. 305–320. isbn: 9781931971102 (cit. on
pp. 1, 2).

[7] Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy,
and Jon Crowcroft. “Raft Refloated: Do We Have
Consensus?” In: ACM SIGOPS Operating Systems
Review 49.1 (Jan. 2015), pp. 12–21. issn: 0163-
5980. doi: 10.1145/2723872.2723876 . url: https:
// doi.org/ 10.1145/ 2723872.2723876 (cit. on
p. 1).

[8] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen,
Aritra Dhar, David Sommer, Arthur Gervais, Ari
Juels, and Srdjan Capkun. “ROTE: Rollback Pro-
tection for Trusted Execution.” In: 26th USENIX
Security Symposium (USENIX Security 17). Van-
couver, BC: USENIX Association, Aug. 2017, pp. 1289–
1306. isbn: 978-1-931971-40-9. url: https://www.
usenix.org/conference/usenixsecurity17/ technical-
sessions/presentation/matetic (cit. on p. 2).

[9] Badrish Chandramouli, Guna Prasaad, Donald
Kossmann, Justin Levandoski, James Hunter, and
Mike Barnett. “FASTER: An Embedded Concur-
rent Key-Value Store for State Management.” In:
Proceedings of the VLDB Endowment 11.12 (Aug.
2018), pp. 1930–1933. issn: 2150-8097. doi: 10.
14778/ 3229863.3236227 . url: https:// doi.org/
10.14778/3229863.3236227 (cit. on p. 12).

[10] Atsushi Koshiba, Ying Yan, Zhongxin Guo, Mi-
taro Namiki, and Lidong Zhou. “TEE-KV: Secure
Immutable Key-Value Store for Trusted Execu-
tion Environments.” In: Proceedings of the ACM
Symposium on Cloud Computing. SoCC ’18. Carls-
bad, CA, USA: Association for Computing Ma-
chinery, 2018, p. 535. isbn: 9781450360111. doi:
10.1145/3267809.3275475 . url: https://doi.org/
10.1145/3267809.3275475 (cit. on p. 1).

[11] Rohit Sinha and Mihai Christodorescu. VeritasDB:
High Throughput Key-Value Store with Integrity.
Cryptology ePrint Archive, Paper 2018/251. 2018.
url: https:// eprint.iacr.org/ 2018/ 251 (cit. on
p. 13).

[12] Taehoon Kim, Joongun Park, Jaewook Woo, Se-
ungheun Jeon, and Jaehyuk Huh. “ShieldStore:
Shielded In-Memory Key-Value Storage with SGX.”
In: Proceedings of the Fourteenth EuroSys Confer-
ence 2019. EuroSys ’19. Dresden, Germany: As-
sociation for Computing Machinery, 2019. isbn:
9781450362818. doi: 10.1145/ 3302424.3303951 .
url: https://doi.org/10.1145/3302424.3303951
(cit. on p. 13).

[13] David Kaplan, Jeremy Powell, and Tom Woller.
AMD SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More. Tech. rep. Advanced
Micro Devices Inc., 2020. url: https : / / www .
amd.com/ system/ files/ TechDocs/ SEV- SNP-
strengthening-vm-isolation-with-integrity-protection-
and-more.pdf (cit. on p. 1).

[14] Bohdan Trach, Rasha Faqeh, Oleksii Oleksenko,
Wojciech Ozga, Pramod Bhatotia, and Christof
Fetzer. “T-Lease: A Trusted Lease Primitive for
Distributed Systems.” In: Proceedings of the 11th
ACM Symposium on Cloud Computing. SoCC ’20.
Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 387–400. isbn: 9781450381376.
doi: 10.1145/3419111.3421273 . url: https://doi.
org/10.1145/3419111.3421273 (cit. on pp. 1, 13).

[15] Arvind Arasu, Badrish Chandramouli, Johannes
Gehrke, Esha Ghosh, Donald Kossmann, Jonathan
Protzenko, Ravi Ramamurthy, Tahina Ramananan-
dro, Aseem Rastogi, Srinath Setty, Nikhil Swamy,
Alexander van Renen, and Min Xu. “FastVer: Mak-
ing Data Integrity a Commodity.” In: Proceedings
of the 2021 International Conference on Manage-
ment of Data. SIGMOD ’21. Virtual Event, China:
Association for Computing Machinery, 2021, pp. 89–
101. isbn: 9781450383431. doi: 10.1145/3448016.
3457312 . url: https://doi.org/10.1145/3448016.
3457312 (cit. on p. 12).

[16] Arm®. Arm® Realm Management Extension (RME)
System Architecture. Tech. rep. Arm®, 2021. url:
https:// documentation-service.arm.com/ static/
60d3309b677cf7536a55bae0 (cit. on p. 1).

[17] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos,
Do Le Quoc, Vijay Nagarajan, and Pramod Bha-
totia. “Avocado: A Secure In-Memory Distributed
Storage System.” In: Usenix ATC ’21. 2021 (cit. on
p. 13).

[18] Intel®. Intel® Trust Domain Extensions. Tech. rep.
Intel®, 2021. url: https://cdrdv2.intel.com/v1/
dl/getContent/690419 (cit. on p. 1).

[19] Andrew Jeffery, Heidi Howard, and Richard Mortier.
“Rearchitecting Kubernetes for the Edge.” In: Pro-
ceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking. EdgeSys ’21.

14

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://doi.org/10.1145/2723872.2723876
https://doi.org/10.1145/2723872.2723876
https://doi.org/10.1145/2723872.2723876
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.14778/3229863.3236227
https://doi.org/10.14778/3229863.3236227
https://doi.org/10.14778/3229863.3236227
https://doi.org/10.14778/3229863.3236227
https://doi.org/10.1145/3267809.3275475
https://doi.org/10.1145/3267809.3275475
https://doi.org/10.1145/3267809.3275475
https://eprint.iacr.org/2018/251
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.1145/3302424.3303951
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1145/3419111.3421273
https://doi.org/10.1145/3419111.3421273
https://doi.org/10.1145/3419111.3421273
https://doi.org/10.1145/3448016.3457312
https://doi.org/10.1145/3448016.3457312
https://doi.org/10.1145/3448016.3457312
https://doi.org/10.1145/3448016.3457312
https://documentation-service.arm.com/static/60d3309b677cf7536a55bae0
https://documentation-service.arm.com/static/60d3309b677cf7536a55bae0
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud

Online, United Kingdom: Association for Comput-
ing Machinery, 2021, pp. 7–12. isbn: 9781450382915.
doi: 10.1145/3434770.3459730 . url: https://doi.
org/10.1145/3434770.3459730 (cit. on p. 1).

[20] Ines Messadi, Shivananda Neumann, Nico Weich-
brodt, Lennart Almstedt, Mohammad Mahhouk,
and Rüdiger Kapitza. “Precursor: A Fast, Client-
Centric and Trusted Key-Value Store Using RDMA
and Intel SGX.” In: Proceedings of the 22nd Inter-
national Middleware Conference. Middleware ’21.
Québec city, Canada: Association for Computing
Machinery, 2021, pp. 1–13. isbn: 9781450385343.
doi: 10.1145/3464298.3476129 . url: https://doi.
org/10.1145/3464298.3476129 (cit. on p. 13).

[21] Mark Russinovich, Manuel Costa, Cédric Fournet,
David Chisnall, Antoine Delignat-Lavaud, Sylvan
Clebsch, Kapil Vaswani, and Vikas Bhatia. “To-
ward Confidential Cloud Computing.” In: Commu-
nications of the ACM 64.6 (May 2021), pp. 54–
61. issn: 0001-0782. doi: 10.1145/3453930 . url:
https://doi.org/10.1145/3453930 (cit. on p. 1).

[22] Yuanyuan Sun, Sheng Wang, Huorong Li, and
Feifei Li. “Building Enclave-Native Storage En-
gines for Practical Encrypted Databases.” In: Proc.
VLDB Endow. 14.6 (Apr. 2021), pp. 1019–1032.
issn: 2150-8097. doi: 10.14778/3447689.3447705 .
url: https://doi.org/10.14778/3447689.3447705
(cit. on p. 13).

[23] Dimitra Giantsidi, Maurice Bailleu, Natacha Crooks,
and Pramod Bhatotia. “Treaty: Secure Distributed
Transactions.” In: 2022 52nd Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks (DSN). 2022, pp. 14–27. doi: 10.
1109/DSN53405.2022.00015 (cit. on p. 13).

[24] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yin-
qian Zhang. “NARRATOR: Secure and Practi-
cal State Continuity for Trusted Execution in the
Cloud.” In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Se-
curity. CCS ’22. Los Angeles, CA, USA: Associ-
ation for Computing Machinery, 2022, pp. 2385–
2399. isbn: 9781450394505. doi: 10.1145/3548606.
3560620 . url: https://doi.org/10.1145/3548606.
3560620 (cit. on p. 2).

[25] Stephan van Schaik, Alexander Seto, Bader AlBas-
sam, and Christina Garman. “SoK: SGX.Fail: How
Stuff Gets eXposed.” In: 2022 (cit. on p. 4).

[26] Weili Wang, Sen Deng, Jianyu Niu, Michael K.
Reiter, and Yinqian Zhang. “ENGRAFT: Enclave-
Guarded Raft on Byzantine Faulty Nodes.” In:
Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security.
CCS ’22. Los Angeles, CA, USA: Association for
Computing Machinery, 2022, pp. 2841–2855. isbn:

9781450394505. doi: 10.1145/ 3548606.3560639 .
url: https://doi.org/10.1145/3548606.3560639
(cit. on pp. 2, 13).

[27] Sebastian Angel, Aditya Basu, Weidong Cui, Trent
Jaeger, Stella Lau, Srinath Setty, and Sudheesh
Singanamalla. “Nimble: Rollback Protection for
Confidential Cloud Services.” In: 17th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 23). Boston, MA: USENIX
Association, July 2023, pp. 193–208. isbn: 978-
1-939133-34-2. url: https : // www.usenix .org/
conference/ osdi23/ presentation/ angel (cit. on
p. 2).

[28] Heidi Howard, Fritz Alder, Edward Ashton, Amaury
Chamayou, Sylvan Clebsch, Manuel Costa, An-
toine Delignat-Lavaud, Cedric Fournet, Andrew
Jeffery, Matthew Kerner, Fotios Kounelis, Markus
A. Kuppe, Julien Maffre, Mark Russinovich, and
Christoph M. Wintersteiger. Confidential Consor-
tium Framework: Secure Multiparty Applications
with Confidentiality, Integrity, and High Availabil-
ity. 2023. arXiv: 2310.11559 [cs.CR] (cit. on p. 2).

[29] David Kaplan. “Hardware VM Isolation in the
Cloud: Enabling Confidential Computing with AMD
SEV-SNP Technology.” In: Queue 21.4 (Sept. 2023),
pp. 49–67. issn: 1542-7730. doi: 10.1145/3623392 .
url: https:// doi.org/ 10.1145/ 3623392 (cit. on
p. 1).

[30] AWS. AMD SEV-SNP. url: https:// docs.aws.
amazon.com/ AWSEC2/ latest/ UserGuide/ sev-
snp.html. (accessed: 2023-10-17) (cit. on p. 1).

[31] AWS. AWS-2022-001: AWS CloudFormation Issue.
url: https://aws.amazon.com/security/ security-
bulletins/AWS-2022-001/ . (accessed: 2023-01-11)
(cit. on p. 1).

[32] Azure. DCasv5 and ECasv5 series confidential
VMs. url: https : / / learn . microsoft . com / en -
us/ azure/ confidential- computing/ confidential-
vm-overview. (accessed: 2023-10-17) (cit. on p. 1).

[33] Lynn Comp. Microsoft Azure Confidential Com-
puting Powered by 3rd Gen EPYC ™ CPUs. url:
https : / / community . amd . com / t5 / business /
microsoft-azure-confidential-computing-powered-
by-3rd-gen-epyc/ba-p/497796 . (accessed: 2023-01-
09) (cit. on p. 11).

[34] Confidential computing. What is the Confidential
Computing Consortium. url: https://confidentialcomputing.
io. (accessed: 2023-01-03) (cit. on p. 1).

[35] etcd. Does etcd encrypt data stored on disk drives?
url: https : // etcd . io/ docs/ v3 . 5/ op - guide/
security/#does-etcd-encrypt-data-stored-on-disk-
drives. (accessed: 2023-01-11) (cit. on p. 2).

15

https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3464298.3476129
https://doi.org/10.1145/3464298.3476129
https://doi.org/10.1145/3464298.3476129
https://doi.org/10.1145/3453930
https://doi.org/10.1145/3453930
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.1109/DSN53405.2022.00015
https://doi.org/10.1109/DSN53405.2022.00015
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560620
https://doi.org/10.1145/3548606.3560639
https://doi.org/10.1145/3548606.3560639
https://www.usenix.org/conference/osdi23/presentation/angel
https://www.usenix.org/conference/osdi23/presentation/angel
https://arxiv.org/abs/2310.11559
https://doi.org/10.1145/3623392
https://doi.org/10.1145/3623392
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://aws.amazon.com/security/security-bulletins/AWS-2022-001/
https://aws.amazon.com/security/security-bulletins/AWS-2022-001/
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://confidentialcomputing.io
https://confidentialcomputing.io
https://etcd.io/docs/v3.5/op-guide/security/#does-etcd-encrypt-data-stored-on-disk-drives
https://etcd.io/docs/v3.5/op-guide/security/#does-etcd-encrypt-data-stored-on-disk-drives
https://etcd.io/docs/v3.5/op-guide/security/#does-etcd-encrypt-data-stored-on-disk-drives

Andrew Jeffery, Julien Maffre, Heidi Howard, and Richard Mortier

[36] etcd. etcd versus other key-value stores. url: https:
// etcd.io/ docs/ v3.5/ learning/ why/ . (accessed:
2023-01-11) (cit. on p. 2).

[37] GCP. Confidential Computing concepts. url: https:
/ / cloud . google . com / confidential - computing /
confidential-vm/docs/about-cvm. (accessed: 2023-
10-17) (cit. on p. 1).

[38] Intel. Intel Software Guard Extensions. url: https:
//www.intel.com/content/www/us/en/architecture-
and-technology/ software-guard-extensions.html.
(accessed: 2023-01-03) (cit. on p. 1).

[39] Intel®. Intel® Xeon® Platinum 8360Y Processor.
url: https:// ark.intel.com/ content/ www/ us/
en/ ark/ products/ 212459/ intel-xeon-platinum-
8360y-processor-54m-cache-2-40-ghz.html. (ac-
cessed: 2023-01-11) (cit. on p. 1).

[40] Kubernetes. Operating etcd clusters for Kuber-
netes. url: https:// kubernetes.io/ docs/ tasks/
administer-cluster/ configure-upgrade-etcd/ . (ac-
cessed: 2023-01-11) (cit. on p. 1).

[41] Kubernetes. Secrets. url: https://kubernetes.io/
docs/ concepts/ configuration/ secret/ . (accessed:
2023-01-11) (cit. on p. 1).

[42] Julien Maffre. Support for gRPC client streaming.
url: https://github.com/microsoft/CCF/ issues/
4683 . (accessed: 2023-01-09) (cit. on p. 3).

[43] Microsoft. CVE-2019-1234: Azure Stack Spoof-
ing Vulnerability. url: https : // www.cve .org/
CVERecord?id=CVE-2019-1234 . (accessed: 2023-
01-11) (cit. on p. 1).

[44] Microsoft. CVE-2019-1372: Azure Stack Remote
Code Execution Vulnerability. url: https://www.
cve.org/ CVERecord? id=CVE-2019-1372 . (ac-
cessed: 2023-01-11) (cit. on p. 1).

[45] Microsoft. CVE-2023-21531: Azure Service Fabric
Container Elevation of Privilege Vulnerability. url:
https : // www.cve .org/ CVERecord? id= CVE-
2023-21531 . (accessed: 2023-01-11) (cit. on p. 1).

[46] Edgeless Systems. EdgelessDB: The database for
the age of confidential computing. url: https://
www.edgeless.systems/products/edgelessdb/ . (ac-
cessed: 2023-01-09) (cit. on p. 13).

[47] The etcd team. etcd. url: https:// etcd.io/ . (ac-
cessed: 2022-12-27) (cit. on pp. 1, 2).

[48] The etcd team. etcd gateway. url: https:// etcd.
io/ docs/ v3 .5/ op- guide/ gateway/ . (accessed:
2023-03-30) (cit. on p. 9).

[49] The gRPC team. gRPC. url: https:// grpc.io/ .
(accessed: 2022-12-27) (cit. on p. 2).

[50] The CoreDNS team. CoreDNS. url: https : / /
coredns.io/ . (accessed: 2022-12-27) (cit. on p. 2).

[51] The Kubernetes team. Encrypting Secret Data at
Rest. url: https:// kubernetes.io/ docs/ tasks/

administer-cluster/encrypt-data/ . (accessed: 2023-
01-09) (cit. on p. 2).

[52] The Kubernetes team. Kubernetes. url: https :
//kubernetes.io/ . (accessed: 2022-12-27) (cit. on
p. 1).

[53] The M3 team. M3. url: https:// m3db.io/ . (ac-
cessed: 2022-12-27) (cit. on p. 2).

[54] The Protobuf team. Protobuf. url: https://developers.
google.com/protocol-buffers/ . (accessed: 2022-12-
27) (cit. on p. 2).

[55] The Rook team. Rook. url: https : // rook . io/ .
(accessed: 2022-12-27) (cit. on p. 2).

16

https://etcd.io/docs/v3.5/learning/why/
https://etcd.io/docs/v3.5/learning/why/
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/microsoft/CCF/issues/4683
https://github.com/microsoft/CCF/issues/4683
https://www.cve.org/CVERecord?id=CVE-2019-1234
https://www.cve.org/CVERecord?id=CVE-2019-1234
https://www.cve.org/CVERecord?id=CVE-2019-1372
https://www.cve.org/CVERecord?id=CVE-2019-1372
https://www.cve.org/CVERecord?id=CVE-2023-21531
https://www.cve.org/CVERecord?id=CVE-2023-21531
https://www.edgeless.systems/products/edgelessdb/
https://www.edgeless.systems/products/edgelessdb/
https://etcd.io/
https://etcd.io/docs/v3.5/op-guide/gateway/
https://etcd.io/docs/v3.5/op-guide/gateway/
https://grpc.io/
https://coredns.io/
https://coredns.io/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/
https://kubernetes.io/
https://m3db.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://rook.io/

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	3.1 CCF
	3.2 Data model and API
	3.3 Threat model
	3.4 Consistency model
	3.5 Fault and durability model
	3.6 Incremental adoption

	4 Implementation
	4.1 Internals
	4.2 Consistency model
	4.3 Auditability
	4.4 Discussion

	5 Evaluation
	5.1 Setup
	5.2 vs etcd
	5.3 Horizontal scalability
	5.4 Vertical scalability
	5.5 Commit latency and receipts

	6 Related work
	7 Conclusion

